skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Horiuchi, Shunsaku"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Energetic cosmic rays scatter off the cosmic neutrino background throughout the history of the Universe, yielding a diffuse flux of cosmic relic neutrinos boosted to high energies. We calculate this flux under different assumptions of the cosmic-ray flux spectral slope and redshift evolution. The nonobservation of the diffuse flux of boosted relic neutrinos with current high-energy neutrino experiments already excludes an average cosmic neutrino background overdensity larger than 10 4 over cosmological distances. We discuss the future detectability of the diffuse flux of boosted relic neutrinos in light of neutrino overdensity estimates and cosmogenic neutrino backgrounds. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract We perform three-dimensional supernova simulations with a phenomenological treatment of neutrino flavor conversions. We show that the explosion energy can increase to as high as $$\sim 10^{51}$$ erg depending on the critical density for the onset of flavor conversions, due to a significant enhancement of the mean energy of electron antineutrinos. Our results confirm previous studies showing such energetic explosions, but for the first time in three-dimensional configurations. In addition, we predict neutrino and gravitational wave (GW) signals from a nearby supernova explosion aided by flavor conversions. We find that the neutrino event number decreases because of the reduced flux of heavy-lepton neutrinos. In order to detect GWs, next-generation GW telescopes such as Cosmic Explorer and the Einstein Telescope are needed even if the supernova event is located at the Galactic Center. These findings show that the neutrino flavor conversions can significantly change supernova dynamics and highlight the importance of further studies on the quantum kinetic equations to determine the conditions of the conversions and their asymptotic states. 
    more » « less
  3. Abstract Sterile neutrinos can be produced through mixing with active neutrinos in the hot, dense core of a core-collapse supernova (SN). The standard bounds on the active-sterile mixing (sin2θ) from SN arise from SN1987A energy-loss, requiringEloss< 1052erg. In this work, we discuss a novel bound on sterile neutrino parameter space arising from the energy deposition through its decays inside the SN envelope. Using the observed underluminous SN IIP population, this energy deposition is constrained to be below ∼ 1050erg. Focusing on sterile neutrino mixing only with tau neutrino, for heavy sterile massesmsin the range 100 – 500 MeV, we find stringent constraints on sin2θτreaching two orders of magnitude lower than those from the SN1987A energy loss argument, thereby probing the mixing angles required for Type-I seesaw mechanism. Similar bounds will also be applicable to sterile mixing only with muons (sin2θμ). 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. We constrain the neutrino-dark matter cross section using properties of the dark matter density profiles of Milky Way dwarf spheroidal galaxies. The constraint arises from core-collapse supernova neutrinos scattering on dark matter as a form of energy injection, allowing the transformation of the dark matter density profile from a cusped profile to a flatter profile. We assume a standard cosmology of dark energy and cold, collisionless, and non-self-interacting dark matter. By requiring that the dark matter cores do not lose too much mass or overshoot constraints from stellar kinematics, we place an upper limit on the cross section of, which is stronger than previous bounds for these energies. Consideration of baryonic feedback or host galaxy effects on the dark matter profile can strengthen this constraint. 
    more » « less
  5. Beyond the Standard Model electromagnetic properties of neutrinos may lead to copious production of sterile neutrinos in the hot and dense core of a core-collapse supernova. In this work, we focus on the active-sterile transition magnetic moment portal for heavy sterile neutrinos. Firstly, we revisit the SN1987A cooling bounds for dipole portal using the integrated luminosity method, which yields more reliable results (especially in the trapping regime) compared to the previously explored via emissivity loss, also known as the Raffelt criterion. Secondly, we obtain strong bounds on the dipole coupling strength reaching as low as 10^{-11} /GeV from energy deposition, i.e., constrained from the observation of explosion energies of underluminous Type IIP supernovae. In addition, we find that sterile neutrino production from Primakoff upscattering off of a proton dominates over scattering off of an electron for low sterile neutrino masses. 
    more » « less
  6. ABSTRACT How massive stars end their lives depends on the core mass, core angular momentum, and hydrogen envelopes at death. However, these key physical facets of stellar evolution can be severely affected by binary interactions. In turn, the effectiveness of binary interactions itself varies greatly depending on the initial conditions of the binaries, making the situation much more complex. We investigate systematically how binary interactions influence core–collapse progenitors and their fates. Binary evolution simulations are performed to survey the parameter space of supernova progenitors in solar metallicity binary systems and to delineate major evolutionary paths. We first study fixed binary mass ratios ($$q=M_2/M_1$$ = 0.5, 0.7, and 0.9) to elucidate the impacts of initial mass and initial separation on the outcomes, treating separately Type Ibc supernova, Type II supernova, accretion-induced collapse (AIC), rapidly rotating supernova (Ibc-R), black hole formation, and long gamma ray burst (long GRB). We then conduct 12 binary population synthesis model calculations, varying the initial condition distributions and binary evolution parameters, to estimate various supernova fractions. We obtain a Milky Way supernova rate $$R_{\rm SN} = (1.78$$–$$2.47) \times 10^{-2} \, {\rm yr}^{-1}$$ which is consistent with observations. We find the rates of AIC, Ibc-R, and long GRB to be $$\sim 1/100$$ the rate of regular supernovae. Our estimated long GRB rates are higher than the observed long GRB rate and close to the low luminosity GRB rate, although care must be taken considering our models are computed with solar metallicity. Furthering binary modelling and improving the inputs one by one will enable more detailed studies of these and other transients associated with massive stars. 
    more » « less
  7. ABSTRACT The gamma-ray Fermi-LAT Galactic Centre excess (GCE) has puzzled scientists for over 15 yr. Despite ongoing debates about its properties, and especially its spatial distribution, its nature remains elusive. We scrutinize how the estimated spatial morphology of this excess depends on models for the Galactic diffuse emission, focusing particularly on the extent to which the Galactic plane and point sources are masked. Our main aim is to compare a spherically symmetric morphology – potentially arising from the annihilation of dark matter (DM) particles – with a boxy morphology – expected if faint unresolved sources in the Galactic bulge dominate the excess emission. Recent claims favouring a DM-motivated template for the GCE are shown to rely on a specific Galactic bulge template, which performs worse than other templates for the Galactic bulge. We find that a non-parametric model of the Galactic bulge derived from the VISTA Variables in the Via Lactea survey results in a significantly better fit for the GCE than DM-motivated templates. This result is independent of whether a galprop-based model or a more non-parametric ring-based model is used to describe the diffuse Galactic emission. This conclusion remains true even when additional freedom is added in the background models, allowing for non-parametric modulation of the model components and substantially improving the fit quality. When adopted, optimized background models provide robust results in terms of preference for a boxy bulge morphology for the GCE, regardless of the mask applied to the Galactic plane. 
    more » « less